天津农学院学报 ›› 2017, Vol. 24 ›› Issue (4): 57-60.

• 研究与简报 • 上一篇    下一篇

土壤养分的近红外漫反射光谱预测模型分析

董桂梅, 李耀文, 于亚萍, 杨仁杰, 纪君柔, 胡永浩   

  1. 天津农学院 工程技术学院,天津 300384
  • 收稿日期:2017-06-30 出版日期:2017-12-31 发布日期:2019-10-15
  • 作者简介:董桂梅(1978–),女,天津市人,讲师,博士,主要从事光谱检测技术与应用研究。E-mail:guimeidong@gmail.com。
  • 基金资助:
    天津市高等学校科技发展基金计划项目“基于三维荧光光谱土壤中多环芳烃检测方法研究”(20140621); 天津市自然科学基金项目“基于二维相关荧光谱土壤中PAHs信息提取及检测方法研究”(14JCYBJC30400); 天津农学院科学研究发展基金计划项目“基于光谱融合的土壤养分快速检测技术”(2013N05)

Analysis of Prediction Model for Soil Nutrients by Near Infrared Diffuse Reflectance Spectroscopy

DONG Gui-mei, LI Yao-wen, YU Ya-ping, YANG Ren-jie, JI Jun-rou, HU Yong-hao   

  1. College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300384, China
  • Received:2017-06-30 Online:2017-12-31 Published:2019-10-15

摘要: 针对土壤养分近红外漫反射光谱数据分析的预测问题,分别利用主成分回归和偏最小二乘回归的方法建立土壤样品的近红外漫反射光谱全氮含量的数学模型,比较模型的预测精度。研究结果表明,采用主成分回归法建模预测结果的均方根误差RMSEP为0.040;偏最小二乘回归法建模的RMSEP为0.034,通过模型验证得到的全氮含量预测值与实际值相关性分析得到主成分回归法决定系数R2=0.873 1,偏最小二乘回归法R2=0.903 5,表明偏最小二乘回归法所建模型预测精度优于主成分回归法。该研究为提高近红外光谱法土壤养分检测精度提供了依据。

关键词: 近红外光谱, 土壤, 主成分回归, 偏最小二乘, 全氮含量

Abstract: For the prediction problem in data analysis on near infrared diffuse reflection spectroscopy of soil nutrient, in this paper, the principal component regression and partial least squares regression were used to establish the mathematical models of the near infrared spectra of soil samples with different total nitrogen contents, and the prediction accuracy of the models were compared. The results show that the RMSEP is 0.040 by principal component regression and 0.034 by partial least squares regression respectively, with determination coefficient R2=0.873 1 by principal component regression and R2=0.903 5 by partial least squares regression through correlation analysis between the predicted value and the actual value of the total nitrogen content by means of model validation, which indicates the prediction accuracy of modeling by partial least squares regression is superior to that by principal component regression. The research results provides the basis for improving the detection accuracy of soil nutrients by near-infrared spectroscopy.

Key words: near infrared spectroscopy, soil, principal component regression, partial least squares, total nitrogen content

中图分类号: