[1] 李艳红. 环境因子对铜绿微囊藻生长和光合作用的影响[D]. 南昌:南昌大学,2010. [2] 汪星. 蓝藻光合作用光系统Ⅱ的蛋白质工程与调控研究[D]. 武汉:华中科技大学,2011. [3] 陈莲花. 表面活性剂对铜绿微囊藻生长及光合作用的影响[D]. 南昌:南昌大学,2008. [4] 段伟. 低温条件下叶绿体NAD(P)H脱氢酶复合体的生理功能及其对光质的响应[D]. 山东:山东农业大学,2004. [5] Berger S,Ellersiek U,Steinmuller K.Cyanobacteria contain a mitochondrial complex I homologous NADH- dehydrogenase[J]. FEBS Lett,1991,286(1-2):129-132. [6] Berger S,Ellersiek U,Kinzelt D,et al.Immuno- purification of asubcomplex of the NAD(P)H- plastoquinone-oxidoreductase from the cyanobacterium Synechocystis sp. PCC 6803[J]. FEBS Lett,1993,326(1-3):246-250. [7] 杜林方. 光合作用研究的一些进展[J]. 21世纪青年学者论坛,2003,21(1):58-62. [8] Hladik J,Sofrova D.Does the trimeric form of the Photosystem I reaction center of cyanobacteria in vivo exist?[J]. Photosynth Res,1991,29:171-175. [9] Krauss N,Hinrichs W,Witt I,et al.Three-dimensional structure of system I of photosynthesis at 6 A resolution[J]. Nature,1993,361(28):326-361. [10] 胡朝辉. 高温和光照对光系统Ⅰ结构和功能的影响[D]. 北京:中国科学院研究生院,2004. [11] 徐晓燕. N-苯基-2-萘胺对小球藻的毒性机制研究[D]. 杭州:浙江工业大学,2009. [12] 陈金灶. 蓝藻光合系统电子传递蛋白(Fd)突变体的初步研究[D]. 厦门:厦门大学,2006. [13] 柳斌. 蓝藻的光合作用与氢能开发[J]. 中学生物学,2006,22(5):9. [14] Nield J,Kruse O,Ruprecht J,et al.3D structure of Chlamydomonas reinhardtii and Synechococcus elongatus photosystem II complexes allow for comparison of their OEC organization[J]. J Biol Chem,2000,275(36):27940-27946. [15] Kern J,Renger G.Photosystem Ⅱ:structure and mechanism of the water: plastoquinone oxidoreductase[J]. Photosyn Res,2007,94(2-3):183-202. [16] Loll B,Kern J,Saenger W,et al.Towards complete cofactor arrangement in the 3.0 A resolution structure of photosystem Ⅱ[J]. Nature,2005,438(15):1040-1044. [17] Ferreira K N,Iverson T M,Maghlaoui K,et al.Architecture of the photosynthetic oxygenevolving center[J]. Science,2004,303(5665):1831-1838. [18] Guskov A,Kern J,Gabdulkhakov A,et al.Cyanobacterial photosystem Ⅱ at 2.9-Å resolution and the role of quinines, lipids, channels and chloride[J]. Nature Struct Biol and Mol Biol,2009,16:334-342. [19] Stewart D H,Brudvig G W.Cytochrome b559 of photosystem Ⅱ[J]. Biochim Biophys Acta,1998,1367(1-3):63-87. [20] 吴乃虎,方晓华,施晓梅,等. 高粱叶绿体psbA基因的结构特征及其5'-非编码区的调控效应[J]. 中国科学(C辑),1999,29(4):397-406. [21] Sippolak,Aro E M. Expression of psbA genes is regulated at multiple levels in the cyanobacterium Synechococcus sp. PCC 7942[J]. Photochemistry and Photobiology,2000,71(6):706-714. [22] Constant S,Perewoska I,Alfonso M,et al.Expression of the psbA gene during photoinhibition and recovery in Synechocystis PCC 6714: inhibition and damage of transcriptional and translational machinery prevent the restoration of photosystem Ⅱ activity[J]. Plant Molecular Biology,1997,34(1):1-13. [23] Mohamed A,Eriksson J,Osiewacz H D,et al.Differential expression of the psbA genes in the cyanobacterium Synechocystis 6803[J]. Molecular and General Genetics,1993,238(1-2):161-168. [24] Summerfield T C,Toepel J,Sherman L A.Low-oxygen induction of normally cryptic psbA genes in cyanobacteria[J]. Biochemistry,2008,47(49):12939-12941. [25] KÓS P B,Deak Z,Cheregi O,et al. Differential regulation of psbA and psbD gene expression, and the role of the different D1 protein copies in the cyanobacterium Thermosynechococcus elongatus BP-1[J]. Biochimicaet Biophysica Acta,2008,1777(1):74-83. [26] 李想. 集胞藻PCC6803未知基因slr1122功能分析[D]. 武汉:华中农业大学,2011. [27] De Las Rivas J,Balsera M,Barber J. Evolution of oxygenic photosynthesis: genome-wide analysis of the OEC extrinsic proteins[J]. Trends Plant Sci,2004,9(1):18-25. [28] De Las Rivas J,Barber J. Analyses of the structure of the PsbO protein and its implications[J]. Photosyn Res,2004,81(3):329-343. [29] Kashino Y,Lauber W M,Carroll J A,et al.Proteomic analysis of a highly active Photosystem II preparation from the cyanobacterium Synechocystis sp. PCC 6803 reveals the presence of novel polypeptides[J]. Biochemistry,2002,41:8004-8012. [30] Liu L N,Chen X L,Zhang Y Z,et al.Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red alage: an overview[J]. Biochim Biophys Acta,2005,1708(2):133-142. [31] 苏海楠. 蓝藻与红藻中藻胆蛋白的活性构象研究[D]. 济南:山东大学,2010. [32] Glazer A N.Phycobilisomes:a macromolecular complex optimized for light energy transfer[J]. Biochim Acta,1984,768:29-51. [33] MacColl R. All ophycocyanin and energy transfer[J]. Biochim Biophys Acta,2004,1657(2-3):73-81. [34] 容寿榆,俞国强,单晓亮. 蓝藻藻胆体与菠菜光系统Ⅱ颗粒之间的能量传递[J]. 植物学报,1998,40(7):622-626. [35] 李宾兴. 假根羽藻细胞色素b6f 蛋白复合体中α-胡萝卜素的结构与功能[D]. 北京:中国科学院研究生院,2005. [36] Hope A B.The choroplast cytochrome b6f complex: A critical focus on function[J]. Biochim Biophys Acta,1993,1143:1-22. [37] Hamel P,Olive J,Pierre Y,et al.A new subunit of cytochrome b6f complex undergoes reversible phosphory- lation upon state transition[J]. J Biol Chem,2000,275(22):17072-17079. [38] Boekema E J,Boonstra A F,Dekker J P,et al.Electron microscopic structural analysis of Photosystem I,Photosystem II,and the cytochrome b6f complex from green plants and cyanobacteria[J]. Biomembr,1994,26(1):17-29. [39] Zhang H,Huang D,Cramer W A.Stoichiometrically bound β-carotene in the cytochrome b6f complex of oxygenic photosynthesis protects against oxygen damage[J]. J Biol Chem,1999,274(3):1581-1587. [40] Wollman F A,Minai L,Nechushtai R.The biogenesis and assembly of photosynthetic proteins in thylakoid membranes[J]. Biochin Biophys Acta,1999,1411(1999):21-85. [41] Leuchen U,Gogol E P,Capaldi R A.Structure of the ATP synthase complex of Escherichia coli from cryoelectron microscopy[J]. Biochemistry,1990,29(22):5339-5343. [42] Lemarire C,Wollmam F A.The chloroplast ATP synthase in Chlamydomonasreinhardtii[J]. J Biol Chem,1989,264(17):10235-10242. [43] Schemidt R A,Hsu D K,Deckers-Hebestreit G,et al.The effects of an atpE ribosomebinding site mutation on the stoichiometry of the c subunit in the F1F0 ATPase of Escherichia coli[J]. Arch Biochem Biophys,1995,323(2):423-428. [44] Chen G,Jagendorf A T.Chloroplast molecular chaperone assisted refolding and reconstitution of active multisubunit couplling factor CF1 core[J]. Proc Natl Acad Sci USA,1994,91(24):11497-11501. [45] Ohkawa H,Pakrasi H B,Ogawa T.Two types of functionally distinct NAD(P)H dehydrogenases in Synechocystis sp. strain PCC 6803[J]. J Biol Chem,2000,275(41):31630-31634. [46] Alpes I,Scherer S,BÖger P.The respiratory NADH dehydrogenase of the cyanobacterium Anabaena variabilis: purification and characterization[J]. Biochim Biophys Acta,1989,973(1):41-46. [47] Howitt C A,Mith G D,Day D A.Cyanide-insensitive oxygen uptake and pyridine nucleotide dehydrogenase in the cyanobacterium Anabaena PCC 7120[J]. Biochim Biophys Acta,1993,1141(2-3):313-320. [48] Howitt C A,Udall P K,,Vermaas W F.Type 2 NADH dehydrogenases in the cyanobacterium Synechocystis sp. strain PCC 6803 are involved in regulation rather than respiration[J]. J Bacteriol,1999,181(13):3994-4003. [49] Viljoen C C,Cloete F,Scott W E.Isolation and characterization of an NAD(P)H dehydrogenase from the cyanobacterium,Microcystis aeruginosa[J]. Biochim Biophys Acta,1985,827(3):247-259. [50] Mi H,Endo T,Schreiber U,et al.Electron donation from cyclic and respiratory flows to the photosynthetic intersystem chain is mediated by pyridine nucleotide dehydrogenase in the cyanobaterium Synechocystis PCC 6803[J]. Plant Cell Physiol,1992,33(8):1233-1237. [51] Mi H,Endo T,Ogawa T,et al.Thylakoid membrane-bound, NADPH-specific pyridine nucleo tide dehydrogenase comples mediates cyclic electron transport in the cyanobacterium Synechocystis PCC 6803[J]. Plant Cell Physiol,1995,36(4):661-668. [52] Klughammer B,Sultemeyer D,Badger M R,et al.The involvement of NAD(P)H dehydrogenase subunits,NdhD3 and NdhF3,in high affinity CO2 uptake in Synechococcus sp. PCC 7002 gives evidence for multiple NDH complexes with specific roles in cyanobacteria[J]. Mol Microbiol,1999,32(6):1305-1315. [53] Ohkawa H,Price G D,Badger M R,et al.Mutation of ndh genes leads to inhibition of CO2 uptake rather than HCO3- uptake in Synechocystis sp. strain PCC 6803[J]. J Bacteriol,2000,182(9):2591-2596. [54] Tanaka Y,Katada S,Ishikawa H,et al.Electron flow from NAD(P)H dehydrogenase to photosystem I is required for adaptation to salt shock in the cyanobacterium Synechocystis sp. PCC 6803[J]. Plant Cell Physiol,1997,38(12):1311-1318. [55] Deng Y,Ye J,Mi H.Effects of low CO2 on NAD(P)H dehydrogenase,a mediator of cyclic electron transport around photosystem I in the cyanobacterium Synechocystis PCC 6803[J]. Plant Cell Physiol,2003,44(5):534-540. [56] Kaplan A,Reinhold L.The CO2 concentrating mechanisms in photosynthetic microorganisms[J]. Annu Rev Plant Physiol Plant Mol Biol,1999,50:539-570. [57] Tchernov D,Helman Y,Keren N,et al.Passive entry of CO2 and its energy-dependent intracellular conversion to HCO3- in cyanobacteria are driven by a photosystem I-generated ΔμHP+P[J]. J Biol Chem,2001,276(26):23450-23455. [58] Hibino T,Lee B H,Rai A K,et al.Salt enhances photosystem I content and cyclic electron flow via NAD(P)H dehydrogenase in the halotolerant cyanobacterium Aphanothece halophytica[J]. Aust J Plant Physiol,1996,23(3):321-330. [59] Canaani O.The role of cyclic electron flow around photosystem I and exacitation energy distribution between the photosystems upon acclimation to high ionic strength in Dunaliela salina[J]. Photochem Photobiol,1990,52(3):591-599. [60] Moresco J J,Carvalho P C,Yates Ⅲ J R. Identifying components of protein complexes in C. elegans using co-immunoprecipitation and mass spectrometry[J]. Proteomics,2010,73(11):2198-2204. [61] Xu X,Song Y,Li Y,et al.The tandem affinity purification method: an efficient system for protein complex purification and protein interaction identification[J]. Protein Expr Purif,2010,72(2):149-156. [62] Daigo K,Kawamura T,Ohta Y,et al.Proteomic analysis of native hepatocyte nuclear factor 4 alpha( HNF4 alpha)isoforms, phosphorylation status, and interactive cofactors[J]. J Biol Chem,2010,286(1):674-686. [63] Dresler J,Klimentova J,Stulik J.Bacterial protein complexes investigation using blue native PAGE[J]. Microbiol Res,2011,166(1):47-62. [64] 谢浩,郭小明. 融合标签技术在膜蛋白结构研究中的应用[J]. 生物技术通讯,2009,20(1):138-142. [65] 姜爽,王晓波,袭荣刚,等. 原子力显微技术在膜蛋白研究中的应用[J]. 军事医学科学院院刊,2010,34(5):485-488. |