天津农学院学报 ›› 2025, Vol. 32 ›› Issue (1): 69-76.doi: 10.19640/j.cnki.jtau.2025.01.013

• • 上一篇    下一篇

基于机器学习的半滑舌鳎投饵量预测模型研究

佘诗怡1, 田云臣1,2,3,通信作者, 郑杰1   

  1. 1.天津农学院 计算机与信息工程学院,天津 300392;
    2.天津市水产生态及养殖重点实验室,天津 300392;
    3.农业农村部智慧养殖重点实验室(部省共建),天津 300392
  • 收稿日期:2024-02-22 发布日期:2025-03-04
  • 通讯作者: 田云臣(1967—),男,教授,硕士,主要从事农业物联网、农业大数据、农业信息化、智慧农业方面研究。E-mail:tianyunchen@tjau.edu.cn。
  • 作者简介:佘诗怡(1996—),女,硕士在读,主要从事机器学习、水产养殖智能化方面研究。E-mail:543345204@qq.com。
  • 基金资助:
    国家重点研发计划项目(2020YFD0900600); 国家现代农业产业技术体系资助项目(CARS-47); 天津市海水养殖产业技术体系项目(ITTMRS2021000); 天津农学院研究生科研创新项目(2021XY016)

Study on Cynoglossus semilaevis feeding model based on machine learning

She Shiyi1, Tian Yunchen1,2,3,Corresponding Author, Zheng Jie1   

  1. 1. College of Computer and Information Engineering, Tianjin Agricultural University, Tianjin 300392, China;
    2. Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Tianjin 300392, China;
    3. Key Laboratory of Intelligent Breeding(Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin 300392, China
  • Received:2024-02-22 Published:2025-03-04

摘要: 为解决半滑舌鳎养殖中适宜投饲量确定的问题,许多研究者通过收集大量实验数据制定投饲率表,然而投饲率表法存在精细程度不足和依赖人工经验等问题,不利于实现养殖投饲过程的标准化和自动化。为克服这一问题,本文通过收集养殖企业实际养殖记录数据,采用机器学习方法构建半滑舌鳎投饵量预测模型。模型以与半滑舌鳎摄食相关的29项信息作为特征,首先采用Pearson相关系数、Spearman相关系数和Kendall相关系数进行相关性分析,其次采用主成分分析法进行数据降维,再次将降维的数据集按7∶2∶1随机划分为训练集、验证集和测试集,分别用于训练模型、调整模型参数和评估模型性能。为探讨基于不同算法构建机器学习模型对投饵量的预测效果,在训练集上分别构建了BP神经网络、支持向量机和随机森林模型,其中BP神经网络模型在测试集上的平均绝对误差(MAE)为0.210,均方根误差(RMSE)为0.301,决定系数(R2)为0.802;支持向量机模型在测试集上的MAE为0.248,RMSE为0.370,R2为0.701;随机森林模型在测试集上的MAE为0.106,RMSE为0.185,R2为0.925。结果表明,在三种模型中,基于随机森林的投饵量预测模型预测结果最优,最适合执行养殖中的投饲量确定工作,有利于实现投饲过程的标准化和自动化。

关键词: 机器学习, 半滑舌鳎, 投饵量

Abstract: In order to solve the problem of determining the appropriate feeding amount in Cynoglossus semilaevis aquaculture, researchers made the feeding rate table by collecting a lot of experimental data. However, the feeding rate table has problems, such as insufficient precision, reliance on manual experience and so on, which is not conducive to the realization of standardization and automation in feeding processes. To overcome this problem, this study collected the actual breeding record data of breeding enterprises and used machine learning methods to build a prediction model for the feeding amount of Cynoglossus semilaevis. The model was characterized by 29 items of information related to the feeding of Semilaevis. Firstly, Pearson correlation coefficient, Spearman correlation coefficient and Kendall correlation coefficient were used for correlation analysis. Secondly, principal component analysis method was used to reduce the data dimension. Then the dimensionally reduced data set was randomly divided into training set, verification set and test set in a ratio of 7∶2∶1, which were used to train the model, adjust model parameters and evaluate model performance respectively. In order to explore the prediction effect of machine learning models based on different algorithms on the amount of bait, BP neural network, support vector machine and random forest models were constructed on the training set. The average absolute error of the BP neural network model on the test set was(MAE)0.210, the root mean square error(RMSE)was 0.301, and the coefficient of determination(R2)was 0.802; The MAE of the support vector machine model on the test set was 0.248, the RMSE was 0.370, and the R2 was 0.701; Of the random forest model on the test set the MAE was 0.106, the RMSE was 0.185, and the R2 was 0.925. The results demonstrate that among the three models, the random forest model which performs best in feeding amount prediction, is the most suitable one for the feeding deciding task in actual Cynoglossus semilaevis aquaculture, and is conducive to the realization of standardization and automation in feeding processes.

Key words: machine learning, Cynoglossus semilaevis, feeding amount

中图分类号: