[1] 李顺国, 刘猛, 刘斐, 等.中国高粱产业和种业发展现状与未来展望[J].中国农业科学, 2021, 54(3):471-482. [2] RIBAUT J M, DE VICENTE M C, DELANNAY X.Molecular breeding in developing countries:Challenges and perspectives[J].Current Opinion in Plant Biology, 2010, 13(2):213-218. [3] BERNARDO R.Molecular markers and selection for complex traits in plants:Learning from the last 20 years[J].Crop Science, 2008, 48(5):1649-1664. [4] 赵宇慧, 李秀秀, 陈倬, 等.生物信息学分析方法Ⅰ:全基因组关联分析概述[J].植物学报, 2020, 55(6):715-732. [5] 田玉, 马春红, 宋丽华, 等.数量遗传性状基因定位方法研究进展[J].河北农业科学, 2021, 25(5):88-91, 97. [6] WANG L, LIU Y, GAO L, et al.Identification of candidate forage yield genes in sorghum(Sorghum bicolor L.)using integrated genome-wide association studies and RNA-seq[J].Frontiers in Plant Science, 2022, 12:788433. [7] QUINBY J R, KARPER R E.Inheritance of duration of growth in the milo group of Sorghum[J].Crop Science, 1961, 1(1):8-10. [8] HILLEY J, TRUONG S, OLSON S, et al.Identification of Dw1, a regulator of sorghum stem internode length[J].PLoS One, 2016, 11(3):e0151271. [9] HILLEY J L, WEERS B D, TRUONG S K, et al.Sorghum Dw2 encodes a protein kinase regulator of stem internode length[J].Scientific Reports, 2017, 7:4616. [10] MULTANI D S, BRIGGS S P, CHAMBERLIN M A, et al.Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants[J].Science, 2003, 302(5642):81-84. [11] LI X, LI X, FRIDMAN E, et al.Dissecting repulsion linkage in the dwarfing gene Dw3 region for sorghum plant height provides insights into heterosis[J].Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(38):11823-11828. [12] BAI C, WANG C, WANG P, et al.QTL mapping of agronomically important traits in sorghum(Sorghum bicolor L.)[J].Euphytica, 2017, 213(12):285. [13] RAMI J F, DUFOUR P, TROUCHE G, et al.Quantitative trait loci for grain quality, productivity, morphological and agronomical traits in sorghum(Sorghum bicolor L.Moench)[J].Theoretical and Applied Genetics, 1998, 97(4):605-616. [14] KLEIN R R, RODRIGUEZ-HERRERA R, SCHLUETER J A, et al.Identification of genomic regions that affect grain-mould incidence and other traits of agronomic importance in sorghum[J].Theoretical and Applied Genetics, 2001, 102(2):307-319. [15] HARRIS-SHULTZ K R, DAVIS R F, KNOLL J E, et al.Inheritance and identification of a major quantitative trait locus(QTL)that confers resistance to Meloidogyne incognita and a novel QTL for plant height in sweet sorghum[J].Phytopathology®, 2015, 105(12):1522-1528. [16] LIN Y R, SCHERTZ K F, PATERSON A H.Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population[J].Genetics, 1995, 141(1):391-411. [17] PEREIRA M G, LEE M.Identification of genomic regions affecting plant height in sorghum and maize[J].Theoretical and Applied Genetics, 1995, 90(3):380-388. [18] BROWN P J, KLEIN P E, BORTIRI E, et al.Inheritance of inflorescence architecture in sorghum[J].Theoretical and Applied Genetics, 2006, 113(5):931-942. [19] SHIRINGANI A L, FRISCH M, FRIEDT W.Genetic mapping of QTLs for sugar-related traits in a RIL population of Sorghum bicolor L.Moench[J].Theoretical and Applied Genetics, 2010, 121(2):323-336. [20] WONDIMU Z, DONG H, PATERSON A H, et al.Genome-wide association study reveals genomic loci influencing agronomic traits in Ethiopian sorghum(Sorghum bicolor(L.)Moench)landraces[J].Molecular Breeding, 2023, 43(5):32. [21] DWEIKAT I, BRAUN D, BENJAMIN B, et al.Detection of reproducible QTL associated with bioenergy traits in sorghum across several growing environments[J].Euphytica, 2023, 219(7):70. [22] GUDEN B, YOL E, ERDURMUS C, et al.Construction of a high-density genetic linkage map and QTL mapping for bioenergy-related traits in sweet sorghum[Sorghum bicolor(L.)Moench[J].Frontiers in Plant Science, 2023, 14:1081931. [23] XIN Y, GAO L, HU W, et al.Genome-wide association study based on plant height and drought-tolerance indices reveals two candidate drought-tolerance genes in sweet sorghum[J].Sustainability, 2022, 14(21):14339. [24] UPADHYAYA H D, WANG Y H, GOWDA C L L, et al.Association mapping of maturity and plant height using SNP markers with the sorghum mini core collection[J].Theoretical and Applied Genetics, 2013, 126(8):2003-2015. [25] UPADHYAYA H D, WANG L, PRAKASH C S, et al.Genome-wide association mapping identifies an SNF4 ortholog that impacts biomass and sugar yield in sorghum and sugarcane[J].Journal of Experimental Botany, 2022, 73(11):3584-3596. [26] WANG X, MACE E, TAO Y, et al.Large-scale genome- wide association study reveals that drought-induced lodging in grain sorghum is associated with plant height and traits linked to carbon remobilisation[J].Theoretical and Applied Genetics, 2020, 133(11):3201-3215. [27] 苏舒, 董维, 游录鹏, 等.高粱株高性状的QTL定位初步分析[J].江苏农业科学, 2012, 40(3):19-21. [28] 段国旗, 吕娜, 石颖怡, 等.高粱株高相关基因SbPH11分子标记的开发和应用[J].植物遗传资源学报, 2024, 25(1):111-119. [29] 王瑞, 程庆军, 王绘艳, 等.调控高粱分蘖高度的基因及表达分析[J].华北农学报, 2023, 38(2):43-50. [30] 刘娟.高粱株高和抗蚜连锁标记的发掘与验证[D].保定:河北农业大学, 2014. [31] 徐建霞, 丁延庆, 冯周, 等.基于Super-GBS的高粱株高和节间数QTL定位[J].生物技术通报, 2023, 39(7):185-194. [32] 康晨, 罗峰, 孙守钧.饲用高粱分蘖及其他性状的QTL定位研究现状与进展[J].分子植物育种, 2021, 19(15):5062-5070. [33] 董维, 苏舒, 游录鹏, 等.高粱F6代群体分蘖数的QTL定位[J].南京林业大学学报(自然科学版), 2013, 37(2):55-58. [34] FELTUS F A, HART G E, SCHERTZ K F, et al.Alignment of genetic maps and QTLs between inter-and intra-specific sorghum populations[J].Theoretical and Applied Genetics, 2006, 112(7):1295-1305. [35] SHEHZAD T, IWATA H, OKUNO K.Genome-wide association mapping of quantitative traits in sorghum(Sorghum bicolor(L.)Moench)by using multiple models[J].Breeding Science, 2009, 59(3):217-227. [36] HART G E, SCHERTZ K F, PENG Y, et al.Genetic mapping of Sorghum bicolor(L.)Moench QTLs that control variation in tillering and other morphological characters[J].Theoretical and Applied Genetics, 2001, 103(8):1232-1242. [37] GOVINDARAJULU R, HOSTETLER A N, XIAO Y, et al.Integration of high-density genetic mapping with transcriptome analysis uncovers numerous agronomic QTL and reveals candidate genes for the control of tillering in sorghum[J].G3, 2021, 11(2):jkab024. [38] ALAM M M, MACE E S, VAN OOSTEROM E J, et al.QTL analysis in multiple sorghum populations facilitates the dissection of the genetic and physiological control of tillering[J].Theoretical and Applied Genetics, 2014, 127(10):2253-2266. [39] JIN P, WANG L, ZHAO W, et al.Construction of high density genetic map and QTL mapping in sorghum Χ sudangrass[J].Euphytica, 2021, 217(8):162. [40] WITT HMON K P, SHEHZAD T, OKUNO K.Variation in inflorescence architecture associated with yield components in a sorghum germplasm[J].Plant Genetic Resources, 2013, 11(3):258-265. [41] 徐晓, 任根增, 赵欣蕊, 等.中国高粱地方品种和育成品种穗部表型性状精准鉴定及综合评价[J].中国农业科学, 2022, 55(11):2092-2108. [42] 徐正进, 陈温福, 张龙步, 等.水稻理想穗型设计的原理与参数[J].科学通报, 2005, 50(18):2037-2039. [43] KAJIYA-KANEGAE H, TAKANASHI H, FUJIMOTO M, et al.RAD-seq-based high-density linkage map construction and QTL mapping of biomass-related traits in sorghum using the Japanese landrace takakibi NOG[J].Plant and Cell Physiology, 2020, 61(7):1262-1272. [44] TAKANASHI H, SHICHIJO M, SAKAMOTO L, et al.Genetic dissection of QTLs associated with spikelet- related traits and grain size in sorghum[J].Scientific Reports, 2021, 11:9398. [45] TAKAI T, YONEMARU J I, KAIDAI H, et al.Quantitative trait locus analysis for days-to-heading and morphological traits in an RIL population derived from an extremely late flowering F1 hybrid of sorghum[J].Euphytica, 2012, 187(3):411-420. [46] LIU H, LIU H, ZHOU L, et al.Genetic Architecture of domestication-and improvement-related traits using a population derived from Sorghum virgatum and Sorghum bicolor[J].Plant Science, 2019, 283:135-146. [47] DE SOUZA V F, DA SILVA PEREIRA G, PASTINA M M, et al.QTL mapping for bioenergy traits in sweet sorghum recombinant inbred lines[J].G3, 2021, 11(11):jkab314. [48] ZOU G, ZHAI G, YAN S, et al.Sorghum qTGW1a encodes a G-protein subunit and acts as a negative regulator of grain size[J].Journal of Experimental Botany, 2020, 71(18):5389-5401. [49] 邵健丰, 翟国伟, 王华.高粱穗型相关性状的遗传研究[J].科技通报, 2019, 35(2):46-48. [50] 丁延庆, 汪灿, 徐建霞, 等.基于高密度遗传图谱对高粱穗部性状的QTL定位[J].植物遗传资源学报, 2023, 24(4):1122-1132. [51] 卢庆善.高粱学[M].北京:中国农业出版社, 1999. [52] 冯周, 曹宁, 丁延庆, 等.利用超高密度Bin图谱定位高粱籽粒物理性状的QTL[J].植物遗传资源学报, 2022, 23(6):1746-1755. [53] 王慧婷.高丹草重要营养品质性状的QTL定位及可溶性碳水化合物相关候选基因的挖掘[D].呼和浩特:内蒙古农业大学, 2023. [54] WU Y, LI X, XIANG W, et al.Presence of tannins in sorghum grains is conditioned by different natural alleles of Tannin1[J].Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(26):10281-10286. [55] MORRIS G P, RHODES D H, BRENTON Z, et al.Dissecting genome-wide association signals for loss-of- function phenotypes in sorghum flavonoid pigmentation traits[J].G3, 2013, 3(11):2085-2094. [56] 张丽霞, 王春语, 于淼, 等.利用全基因组关联分析挖掘高粱单宁新调控遗传位点[J].植物生理学报, 2023, 59(6):1125-1134. [57] 白春明, 王春语, 王平, 等.高粱子粒单宁含量和颜色QTL分析[J].植物遗传资源学报, 2017, 18(5):860-866. [58] MURRAY S C, SHARMA A, ROONEY W L, et al.Genetic improvement of sorghum as a biofuel feedstock:I.QTL for stem sugar and grain nonstructural carbohydrates[J].Crop Science, 2008, 48(6):2165-2179. [59] 卢倩倩.高丹草超高密度遗传图谱构建及营养品质性状QTL定位与蛋白质相关候选基因挖掘[D].呼和浩特:内蒙古农业大学, 2023. [60] AYALEW H, PEIRIS S, CHILUWAL A, et al.Stable sorghum grain quality QTL were identified using SC35×RTx430 mapping population[J].The Plant Genome, 2022, 15(3):e20227. [61] 张一中, 周福平, 张晓娟, 等.高粱种质籽粒蛋白质含量和单宁含量的测定及聚类分析[J].天津农业科学, 2017, 23(8):10-14, 50. [62] 倪雪梅, 胡玉兰, 李旭, 等.大胚高油玉米籽粒蛋白质含量相关QTLs定位研究[J].分子植物育种(2024- 03-07).https://link.cnki.net/urlid/46.1068.S.20240305.1751.018. [63] 唐朝臣, 高建明, 韩芸, 等.高粱苗期耐盐碱性QTL定位[J].华北农学报, 2015, 30(3):42-47. [64] 韩立杰, 才宏伟.高粱粒重遗传研究进展[J].生物技术通报, 2019, 35(5):15-27. [65] HAN L, CHEN J, MACE E S, et al.Fine mapping of qGW1, a major QTL for grain weight in sorghum[J].Theoretical and Applied Genetics, 2015, 128(9):1813-1825. [66] 李杰勤, 涂文淼, 戴玲, 等.皖草2号RIL群体5个农艺性状的QTL定位[J].西昌学院学报(自然科学版), 2022, 36(3):1-6. [67] 王燕.高粱抽穗期基因Ma1和Ma3的分子进化及抽穗期的QTL分析[D].北京:中国农业大学, 2015. [68] 倪先林, 赵甘霖, 刘天朋, 等.高粱重要抗性性状的基因定位研究进展[J].福建农业学报, 2012, 27(6):652-660. |