天津农学院学报 ›› 2024, Vol. 31 ›› Issue (1): 88-94.doi: 10.19640/j.cnki.jtau.2024.01.016

• 研究与简报 • 上一篇    下一篇

基于改进ORB-SLAM2算法的动态特征点剔除

周晓睿, 杨磊通信作者, 娄莉娟, 宋欣, 陈江涛   

  1. 天津农学院 工程技术学院,天津 300392
  • 收稿日期:2023-04-21 出版日期:2024-02-29 发布日期:2024-04-02
  • 通讯作者: 杨磊(1980—),女,副教授,硕士,主要从事智能农机装备研发与应用。E-mail:yanglei2016@tjau.edu.cu。
  • 作者简介:周晓睿(1999—),女,硕士在读,主要从事视觉SLAM的研究。E-mail:zhouxiaorui6881@163.com。
  • 基金资助:
    天津农学院研究生科研创新项目(2021XY007); 天津市中央引导地方科技发展基金优秀农业科技特派员项目(22ZYCGSN00660)

Dynamic feature point elimination based on improved ORB-SLAM2

Zhou Xiaorui, Yang LeiCorresponding Author, Lou Lijuan, Song Xin, Chen Jiangtao   

  1. College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
  • Received:2023-04-21 Online:2024-02-29 Published:2024-04-02

摘要: 随着SLAM系统的不断发展,人们对定位服务的要求越来越高,提高定位精度是一直以来不断研究的课题。为了能以更高定位精度的方式来获取图像中的语义信息,本文首先通过对比One stage算法中的网络模型选用了YOLOV5网络模型对目标物体进行检测和识别,提出一种基于动态区域内剔除动态特征点的SLAM算法,利用训练的网络提取图像中语义信息并对动态目标特征点进行剔除,在公开TUM数据集上进行验证,通过对比真实轨迹和本文算法的估计轨迹来进行误差分析。试验结果表明,本文提出的改进算法相对位移误差的均方根误差减小了97.83%,相对旋转误差的均平方根误差减小了96.80%。

关键词: ORB-SLAM2, 目标检测, 语义信息, SLAM系统, 动态区域

Abstract: With the continuous development of SLAM system, people have higher and higher requirements for location services, and improving location accuracy is always a topic of constant research. In order to obtain the semantic information in the image with higher positioning accuracy, the YOLOV5 network model was first selected to detect and recognize the target object by comparing the network model in One stage algorithm. In this paper, a SLAM algorithm based on dynamic region culling was proposed, which used the trained network to extract the semantic information in the image and cull the feature points of the dynamic target. The algorithm was verified on the open TUM data set, and the error analysis was carried out by comparing the real trajectory with the estimated trajectory of the algorithm in this paper. Experimental results showed that the root mean square error of relative displacement error and the mean square root error of relative rotation error of the proposed algorithm were reduced by 97.83% and 96.80% respectively.

Key words: ORB-SLAM2, object detection, semantic information, SLAM system, dynamic region

中图分类号: