天津农学院学报 ›› 2023, Vol. 30 ›› Issue (2): 62-68.doi: 10.19640/j.cnki.jtau.2023.02.013

• 研究与简报 • 上一篇    下一篇

基于改进Tiny YOLOv3的交通标志检测方法

郑海波, 宋爽, 刘同海通信作者   

  1. 天津农学院 计算机与信息工程学院,天津 300392
  • 收稿日期:2022-03-07 出版日期:2023-04-30 发布日期:2023-06-28
  • 通讯作者: 刘同海(1977—),男,教授,博士,主要从事农业人工智能方面研究。E-mail:tonghai_1227@126.com。
  • 作者简介:郑海波(1996—),男,硕士在读,主要从事基于深度学习的目标检测和智慧农业方面研究。E-mail:2009028125@stu.tjau.edu.cn。
  • 基金资助:
    天津市研究生科研创新项目人工智能专项(2020YJSZXS11); 天津市重点研发计划科技支撑重点项目(20YFZCSN00220); 中央引导地方科技发展专项(21ZYCGSN00590); 内蒙古自治区科学技术厅项目(2020GG0068)

Traffic sign detection method based on improved Tiny YOLOv3

Zheng Haibo, Song Shuang, Liu TonghaiCorresponding Author   

  1. College of Computer and Information Engineering, Tianjin Agricultural University, Tianjin 300392, China
  • Received:2022-03-07 Online:2023-04-30 Published:2023-06-28

摘要: 针对智能驾驶场景下的小尺寸交通标志检测准确率不高的问题,提出一种基于Tiny YOLOv3网络的交通标志检测算法。通过使用深度可分离卷积重构特征提取网络和增加浅层与深层特征层之间的特征融合,提高模型对小目标的注意力;同时修改anchor boxes尺寸,提升预测框的准确度。在TT100K交通标志数据集上的试验结果表明,提出算法的平均精度均值(mAP)较Tiny YOLOv3提高了19.3%,对小尺寸交通标志检测具有更强的鲁棒性。

关键词: 交通标志检测, 深度可分离卷积, 特征融合, Tiny YOLOv3

Abstract: Aiming at the problem of low accuracy of small-size traffic sign detection in intelligent driving scenarios, a traffic sign detection algorithm based on Tiny YOLOv3 network was proposed. By using the depth separable convolutional reconstruction feature extraction network and increasing the feature fusion between the shallow and deep feature layers, the model's attention to small targets could be improved; at the same time, the accuracy of the prediction box was also improved by modifying the size of anchor boxes. The test results on the TT100K traffic sign data set showed that the mean average precision(mAP)of the proposed algorithm was 19.3% higher than that of Tiny YOLOv3, and it is more robust to the detection of small-size traffic signs.

Key words: traffic sign detection, depth separable convolution, feature fusion, Tiny YOLOv3

中图分类号: