天津农学院学报 ›› 2026, Vol. 33 ›› Issue (1): 65-70.doi: 10.19640/j.cnki.jtau.2026.01.012

• • 上一篇    下一篇

基于改进YOLOv7-tiny的草莓生长阶段检测研究

徐新1, 景韩愈2, 张天健1, 王丽1, 刘建波1,通信作者   

  1. 1.天津农学院 工程技术学院,天津 300392;
    2.中北大学 软件学院,太原 030051
  • 收稿日期:2024-07-11 出版日期:2026-02-28 发布日期:2026-02-05
  • 通讯作者: 刘建波(1988—),男,讲师,博士,主要研究方向为机器视觉与智能控制、机械装备智能设计与集成应用。E-mail:qingzhoujianbo@126.com。
  • 作者简介:徐新(1998—),男,硕士在读,研究方向为食品机械设计与装备。E-mail:xuxin2141@163.com。
  • 基金资助:
    天津市技术创新引导专项基金(23YDTPJC00620); 天津市教委科研计划重点项目(2023ZD002); 天津农学院青年科技人才发展基金项目(2025QNKJ13)

Strawberry growth stage detection based on improved YOLOv7-tiny

Xu Xin1, Jing Hanyu2, Zhang Tianjian1, Wang Li1, Liu Jianbo1,Corresponding Author   

  1. 1. College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China;
    2. School of Software, North University of China, Taiyuan 030051, China
  • Received:2024-07-11 Online:2026-02-28 Published:2026-02-05

摘要: 为解决草莓采摘过程中机器人对草莓识别精准度低、模型运行速度慢的问题,同时为了减小模型的尺寸,便于模型的搭载,本研究提出了一种基于改进YOLOv7-tiny模型的草莓生长阶段检测算法。首先,为提高模型的鲁棒性,采用数据增强技术,将原有数据进行扩张;其次,使用K-Means++算法对模型的真值盒进行重新聚类,以获得更适合检测草莓生长阶段的视野;为提高模型精度,在原有的网络框架下,增加了6个SimAM轻量级注意力机制模块。相较原有模型精度提高了5%,运行速度提高22.1帧/s,而模型尺寸并未明显提升,符合SimAM轻量级设计的要求。

关键词: 草莓, 生长阶段, YOLOv7-tiny, 目标检测

Abstract: In order to solve the problems of low accuracy of strawberry recognition and slow running speed of the model by the robot in the process of strawberry picking,and to reduce the size of the model to facilitate the mounting of the model, this study proposes a strawberry growth stage detection algorithm based on the improved YOLOv7-tiny model. Firstly, in order to improve the robustness of the model, data enhancement techniques are used to expand the original data; secondly, the K-Means++ algorithm is used to re-cluster the model’s anchors to obtain a more suitable field of view for strawberry growth stage detection; in order to improve the model accuracy, six SimAM lightweight attention mechanism modules are added under the original network framework; compared to the original model the accuracy was improved by 5 percentage points, and the running speed FPS was increased by 22.1, while the model size was not significantly improved, which is in line with the SimAM lightweight design.

Key words: strawberry, growth stage, YOLOv7-tiny, target detection

中图分类号: