[1] 李鹏,王志强,刘凤之,等. 6个草莓品种果实香气组分分类及育种方向分析[J]. 中国果树,2023(6):38-45,53,142. [2] 国家统计局. 中华人民共和国2022年国民经济和社会发展统计公报[J]. 中国统计,2023(3):12-29. [3] PANG X L,SUN Y Q,KONG F Y,et al.Advances and perspectives in research of volatile flavor quality of agricultural products[J]. Scientia Agricultura Sinica,2019,52(18):3192-3198. [4] WANG H,SARKAR A,RAHMAN A,et al.Research on the industrial upgrade of vegetable growers in Shaanxi:A cross-regional comparative analysis of experience reference[J]. Agronomy,2022,12(1):38. [5] 赵春江. 智慧农业的发展现状与未来展望[J]. 华南农业大学学报,2021,42(6):1-7. [6] 黄家才,赵雪迪,高芳征,等. 基于改进YOLOv5s的草莓多阶段识别检测轻量化算法[J]. 农业工程学报,2023,39(21):181-187. [7] 苏文芝. 基于视觉交互技术的采摘机器人系统设计[J]. 农机化研究,2023,45(8):228-230,234. [8] XIONG Y,GE Y,FROM P J.An improved obstacle separation method using deep learning for object detection and tracking in a hybrid visual control loop for fruit picking in clusters[J]. Computers and Electronics in Agriculture,2021,191:106508. [9] FAN Y,ZHANG S,FENG K,et al.Strawberry maturity recognition algorithm combining dark channel enhancement and YOLOv5[J]. Sensors,2022,22(2):419. [10] XU X,LIU J,XU Q, et al. Recent developments on detection technology for the drying processes of agricultural products[J]. Technology in Agronomy,2025,5(1):e013.[A1] [11] WANG R,HAN F,JIN Y,et al.Correlation between moisture content and machine vision image characteristics of corn kernels[J]. International Journal of Food Properties,2020,23(1):319-328. [12] WANG Y,WU H,HUA X,et al.Biological characters identification for hard clam larva based on the improved YOLOX-s[J]. Computers and Electronics in Agriculture,2023,212:108103. [13] YU K,TANG G,CHEN W,et al.MobilNet-YOLOv5s:An improved lightweight method for real-time detection of sugarcane stem nodes in complex natural environments[J]. IEEE Access,2023,11:104070-104083. [14] CHEN J,MA A,HUANG L,et al.GA-YOLO:A lightweight YOLO model for dense and occluded grape target detection[J]. Horticulturae,2023,9(4):443. [15] GAI R,CHEN N,YUAN H.A detection algorithm for cherry fruits based on the improved YOLO-v4 model[J]. Neural Computing and Applications,2023,35(19):13895-13906. [16] YUE X,WANG Q,HE L,et al.Research on tiny target detection technology of fabric defects based on improved YOLO[J]. Applied Sciences,2022,12(13):6823. [17] WANG C Y,BOCHKOVSKIY A,LIAO H M.YOLOv7:Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Vancouver,BC,Canada. IEEE,2023:7464-7475. [18] YANG L X,ZHANG R Y,LI L D,et al.SimAM:A simple,parameter-Free Attention Module for convolutional neural networks[C]//International Conference on Machine Learning,2021. [19] XU X,LIU J,ZHANG T,et al.Online detection of potato drying stages based on improved YOLOv7-tiny model[J]. Drying Technology,2025,43(4):679-689. |