天津农学院学报 ›› 2024, Vol. 31 ›› Issue (6): 79-84.doi: 10.19640/j.cnki.jtau.2024.06.013

• 研究与简报 • 上一篇    下一篇

基于荧光光谱技术的蔬菜表面西维因农药残留检测

秦艺洋, 黎少财, 张汉, 董桂梅, 杨帆, 杨仁杰通讯作者   

  1. 天津农学院 工程技术学院,天津 300392
  • 收稿日期:2023-09-27 出版日期:2024-12-31 发布日期:2024-12-31
  • 通讯作者: 杨仁杰(1978—),男,教授,博士,主要从事光谱检测技术与应用方面的研究。E-mail:rjyang1978@163.com。
  • 作者简介:秦艺洋(1997—),女,硕士在读,主要从事光谱检测方面的研究。E-mail:1127641006@qq.com。
  • 基金资助:
    国家自然科学基金项目(41771357,21607114,81471698); 天津市研究生科研创新项目(2020YJSS126)

Detection of carbaryl pesticide residues on vegetable surface based on fluorescence spectroscopy

Qin Yiyang, Li Shaocai, Zhang Han, Dong Guimei, Yang Fan, Yang RenjieCorresponding Author   

  1. College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
  • Received:2023-09-27 Online:2024-12-31 Published:2024-12-31

摘要: 将荧光光谱技术与化学计量学结合,建立一种定性定量分析蔬菜表面西维因农药残留的检测方法。以菠菜叶表面西维因农药为研究对象,准备表面涂有不同浓度(1.0×10-3 g/L~1.0×10-1 g/L)西维因农药和未涂农药的菠菜叶片样品,采用Perkin Elmer公司生产的LS-55型荧光分光光度计采集所有样品的荧光光谱,并对其分别进行S-G平滑、S-G平滑+正交信号校正(OSC)预处理。在此基础上,基于偏最小二乘(PLS)法建立了定性定量分析菠菜叶片表面西维因农药残留的数学模型。对比不同模型结果发现,经S-G平滑+OSC处理后的偏最小二乘判别(PLS-DA)模型和PLS定量模型能提供更好的分析结果,PLS-DA模型对校正集和预测集样品的判别准确率均为100%,PLS定量模型对校正集和预测集样品浓度预测的相关系数R2均为0.98,校正集和预测集均方根误差分别为5.2×10-3g/L和6.1×10-3g/L。

关键词: 蔬菜, 西维因, 荧光光谱, 农药残留, 偏最小二乘法

Abstract: A qualitative and quantitative method for the detection of carbaryl pesticide residues on the surface of vegetable leaves was developed by combining fluorescence spectroscopy with chemometrics. Taking carbaryl pesticide on the surface of spinach leaves as the research object, spinach leaves of uncoated and coated with carbaryl pesticide at different concentrations(1.0×10-3 g/L~1.0×10-1 g/L)were prepared. The fluorescence spectra of all samples were collected by LS-55 fluorescence spectrophotometer produced by Perkin Elmer Company. All spectra were preprocessed using S-G smoothing and S-G smoothing + orthogonal signal correction(OSC)methods, respectively. On this basis, the mathematical models for qualitative and quantitative analysis of carbaryl pesticide residues on spinach leaf surface were established based on the partial least squares(PLS)method. Comparing the results of different models, it was found that the partial least squares discriminant(PLS-DA)model and the PLS quantitative model could provide the better results using S-G smoothing+OSC preprocessed spectra. For PLS-DA model, the discriminant accuracies were 100% for calibration and prediction sets. For PLS quantitative model, the correlation coefficients R2 were 0.98 for calibration and prediction sets, and the root-mean-square errors of calibration and prediction were 5.2×10-3 g/L and 6.1×10-3 g/L, respectively.

Key words: vegetable, carbaryl, fluorescence spectroscopy, pesticide residue, partial least squares method

中图分类号: