天津农学院学报 ›› 2025, Vol. 32 ›› Issue (4): 86-91.doi: 10.19640/j.cnki.jtau.2025.04.013

• • 上一篇    下一篇

融合超像素分割的图像语义分割算法

欧阳凯, 杨磊通信作者, 陈江涛, 张昊, 刘一, 宋欣   

  1. 天津农学院 工程技术学院,天津 300392
  • 收稿日期:2024-02-28 发布日期:2025-09-02
  • 通讯作者: 杨磊(1980—),女,副教授,硕士,主要从事智能农机装备研发与应用。E-mail:yanglei2016@tjau.edu.cn。
  • 作者简介:欧阳凯(1999—),男,硕士在读,主要从事机器人导航与路径规划及深度学习研究。E-mail:oykiah@163.com。
  • 基金资助:
    天津农学院研究生科研创新项目(2021XY007)

Image semantic segmentation algorithm fused with superpixel segmentation

Ouyang Kai, Yang LeiCorresponding Author, Chen Jiangtao, Zhang Hao, Liu Yi, Song Xin   

  1. College of Engineering and Technology, Tianjin Agriculture University, Tianjin 300392, China
  • Received:2024-02-28 Published:2025-09-02

摘要: 图像语义分割是一种像素级图像分类方式,在无人驾驶、机器人视觉等领域有着重要的作用。针对语义分割过程中存在的边缘分割不准确、容易丢失小目标细节信息等问题,提出一种基于深度学习融合超像素分割的图像语义分割算法,采用变分自编码器对图像特征进行学习,通过多解码器结构预测粗糙全分辨率语义标签,同时在超像素图像分割的基础上进一步对粗糙语义分割结果进行优化,最后在COCO2017数据集上进行验证,经过试验分析所提算法全局像素准确率GA值较融合前提高4.4%,平均交并比MIoU值较融合前提升8.2%,分割精度较SegNet网络提高24.3%,在分割精度和分割速度上均取得了较好的效果,在实时性和准确性之间达到很好的平衡。

关键词: 深度学习, 变分自编码器, 边缘优化

Abstract: Image semantic segmentation is a pixel-level image classification method, which plays an important role in un-manned driving, robot vision and other fields. Aiming at the problems of inaccurate edge segmentation and easy loss of small target details in the process of semantic segmentation, an image semantic segmentation algorithm based on deep learning and superpixel segmentation was proposed. The image features were learned by using variational auto-encoder, and rough full- resolution semantic labels were predicted by multi-decoder structure. At the same time, the rough semantic segmentation results are further optimized on the basis of superpixel image segmentation, and finally verified on COCO2017 datasets. After experimental analysis, the proposed algorithm achieved a 4.4% improvement in global pixel accuracy(GA)compared to the pre-fused approach. Additionally, the average intersection over union(MIoU)increased by 8.2% compared to the pre-fused method, resulting in a 24.3% enhancement in segmentation precision over the SegNet network. The proposed algorithm achieves good results in both the segmentation accuracy and the segmentation speed, and achieves a good balance between real-time and accuracy.

Key words: deep learning, variational auto-encoder, edge optimization

中图分类号: