[1] 严毅,邓超,李琳,等. 深度学习背景下的图像语义分割方法综述[J]. 中国图象图形学报,2023,28(11):3 342-3 362. [2] 孙海蓉,伍金文. 基于加权灰度图与混合阈值分割方法的光伏热斑检测[J]. 电力科学与工程,2024,40(1):63-68. [3] 杜啸晓,杨新,施鹏飞. 一种新的基于区域和边界的图象分割方法[J]. 中国图象图形学报(A辑),2001(8):755-759. [4] KARASULU B,KORUKOGLU S.A simulated annealing-based optimal threshold determining method in edge-based segmentation of grayscale images[J]. Applied Soft Computing,2011,11(2):2246-2259. [5] 蒋敏,蒋品群,宋树祥,等. 基于点线配准和超像素分割的图像拼接算法[J]. 计算机应用与软件,2023,40(10):250-254,267. [6] REN,MALIK.Learning a classification model for segmentation[C]//Proceedings ninth IEEE international conference on computer vision. Nice,France. IEEE,2003:10-17. [7] SHELHAMER E,LONG J,DARRELL T.Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(4):640-651. [8] BADRINARAYANAN V,KENDALL A,CIPOLLA R.SegNet:A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495. [9] NOH H,HONG S,HAN B.Learning deconvolution network for semantic segmentation[C]//2015 IEEE International Conference on Computer Vision(ICCV). Santiago,Chile. IEEE,2015:1520-1528. [10] RONNEBERGER O,FISCHER P,BROX T.U-Net:Convolutional networks for biomedical image segmentation[C]//Medical image computing and computer-assisted intervention- MICCAI 2015. Cham:Springer,2015:234-241. [11] 李泽. 基于深度学习的卫星图像语义分割技术研究与实现[D]. 北京:中国石油大学(北京),2019. [12] ZHOU Z,SIDDIQUEE M M R,TAJBAKHSH N,et al. UNet++:A Nested U-Net architecture for medical image segmentation[M/OL]. arXiv,2018[2024-04-02]. http://arxiv.org/abs/1807.10165. [13] QIN X,ZHANG Z,HUANG C,et al.U2-Net:Going deeper with nested U-structure for salient object detection[J]. Pattern Recognition,2020,106:107404. [14] ACHANTA R,SHAJI A,SMITH K,et al.SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(11):2274-2282. [15] 张仁杰,陈伟,杭梦鑫,等. 基于变分自编码器的不平衡样本异常流量检测[J]. 计算机科学,2021,48(7):62-69. [16] 曹真,谢红薇. 基于改进变分自编码器的零样本图像分类[J]. 太原理工大学学报,2021,52(2):300-306. [17] YOON S H,KWEON H,JEONG J,et al. Exploring pixel-level self-supervision for weakly supervised semantic segmentation[M/OL]. arXiv,2021[2024-03-27]. http://arxiv.org/abs/2112.05351. [18] SHELHAMER E,LONG J,DARRELL T.Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(4):640-651. [19] CHEN L C,PAPANDREOU G,KOKKINOS I,et al.DeepLab:Semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,40(4):834-848. |