天津农学院学报 ›› 2025, Vol. 32 ›› Issue (6): 32-41.doi: 10.19640/j.cnki.jtau.2025.06.006

• • 上一篇    下一篇

基于不同多元统计方法组合的天津市农业用水量预测模型研究

张海欣a, 董艳慧a,b,通信作者, 陶鑫怡a, 赵钰薇a   

  1. 天津农学院 a.水利工程学院,b.天津农学院-中国农业大学智慧水利研究中心,天津 300392
  • 收稿日期:2024-08-27 发布日期:2025-12-26
  • 通讯作者: 董艳慧(1982—),女,讲师,博士,主要从事水文学、农业水利方面的研究。E-mail:dyh1918@163.com。
  • 作者简介:张海欣(2003—), 男, 本科在读, 主要从事水利工程方面的研究。E-mail:2892278897@qq.com。
  • 基金资助:
    国家重点研发计划子课题(2023YFD1900802-01); 天津市教委科研计划项目(2023SK007); 水利部重大科技项目(SKS-2022050); 大学生创新创业训练计划项目(202310061220)

Research on agricultural water consumption prediction model in Tianjin city based on different combinations of multivariate statistical methods

Zhang Haixina, Dong Yanhuia,b,Corresponding Author, Tao Xinyia, Zhao Yuweia   

  1. ianjin Agricultural University, a. College of Water Conservancy Engineering, b. Tianjin Agricultural University-China Agricultural University Joint Smart Water Conservancy Research Center, Tianjin 300392, China
  • Received:2024-08-27 Published:2025-12-26

摘要: 农业用水量预测对于区域水资源规划、管理与利用有重要意义。本文采用多元统计分析方法, 研究天津市用水结构、农业用水量变化趋势及预测模型。结果表明:2001—2020年天津市农业用水量呈缓慢下降趋势, 但仍高于其他行业用水量, 2021—2022年生态用水量(占比约35%)超过农业用水量(占比约30%);筛选出农业用水量的14个影响因素, 根据相关分析得到与天津市农业用水量关联度高的3个影响因素:生活用水量、生态用水量和农村居民可支配收入;基于因子分析得出影响天津市农业用水量的3个主要驱动因子:社会和灌溉面积因素、水资源因素、工业用水量因素;基于多元线性和多元非线性回归, 构建了天津市农业用水量的3种预测模型:MLR模型(R2=0.722)、MNLR模型(R2=0.729)和FA-MNLR模型(R2=0.849), 3种模型的平均相对误差MRE≤11.861%, 均方根误差RMSE≤1.787, 均能有效预测天津市农业用水量;FA-MNLR模型的拟合度最高, 该模型融合了14个影响因素, 与农业用水量具有逻辑上的关联性, 且将因子分析与多元非线性回归相结合, 提供了一种新的建模方法。本文的研究成果可为农业用水量预测、水资源配置和管理提供参考。

关键词: 农业用水, 解析模型, 因子分析, 相关分析, 非线性

Abstract: The prediction of agricultural water consumption is of great significance for regional water resource planning, management, and utilization. Multivariate statistical analysis methods were used to research water use structure and trends of agricultural water consumption in Tianjin in this paper. Results indicated that from 2001 to 2020, agricultural water consumption in Tianjin showed a slow decline, but still higher than that of other industries. In 2021—2022, the ecological water consumption(accounting for about 35%)exceeded the agricultural water consumption(accounting for about 30%). Fourteen influencing factors related to agricultural water consumption were screened out, and based on correlation analysis, three highly correlated influencing factors of agricultural water consumption in Tianjin were determined: domestic water consumption, ecological water consumption, and disposable income of rural residents. Based on factor analysis, three main driving factors affecting agricultural water consumption in Tianjin were identified: social and irrigation area, water resources, and industrial water consumption. Based on multiple linear and multiple nonlinear regression, three prediction models for agricultural water consumption in Tianjin were constructed, namely MLR model(R2=0.722), MNLR model(R2=0.729)and FA-MNLR model(R2=0.849); These three models have mean relative error(MRE)≤11.861% and root mean square error(RMSE)≤1.787, all of which can effectively predict agricultural water consumption in Tianjin. Among them, FA-MNLR model has the highest fit, integrating 14 influencing factors and having logical relationships with agricultural water consumption. Factor analysis and multiple nonlinear regression are combined, which provides a new modeling method. Results of this paper can provide reference for agricultural water consumption prediction, water resource allocation and management.

Key words: agricultural water, analytical model, factor analysis, correlation analysis, nonlinear

中图分类号: