[1] ZHANG D,ZHU Z,LI Y et al. Comparative genomics of Exiguobacterium reveals what makes a cosmopolitan bacterium[J]. mSystems,2021,6(4):e00383-e00403. [2] 李昊轩,贺承光,马红霞. 微生物冷激蛋白家族的进化与功能多样性[J]. 中国生物化学与分子生物学报,2023,39(8):1106-1112. [3] CABALLERO C J,MENENDEZ-GIL P,CATALAN- MORENO A,et al.The regulon of the RNA chaperone CspA and its auto-regulation in Staphylococcus aureus[J]. Nucleic Acids Res,2018,46(3):1345-1361. [4] YU T,KETO-TIMONEN R,JIANG X,et al.Insights into the phylogeny and evolution of cold shock proteins:From enteropathogenic Yersinia and Escherichia coli to eubacteria[J]. International Journal of Molecular Sciences,2019,20(16):4059. [5] GOLDSTEIN J,POLLITT N S,INOUYE M.Major cold shock protein of Escherichia coli[J]. Proc Natl Acad Sci U S A,1990,87(1):283-287. [6] LI S,WENG Y,LI X,et al.Acetylation of the CspA family protein CspC controls the type Ⅲ secretion system through translational regulation of exsA in Pseudomonas aeruginosa[J]. Nucleic Acids Res,2021,49(12):6756-6770. [7] MUCHAAMBA F,VON AH U,STEPHAN R,et al.Deciphering the global roles of cold shock proteins in Listeria monocytogenes nutrient metabolism and stress tolerance[J]. Frontiers in Microbiology,2022,13:1057754. [8] BUDKINA K S,ZLOBIN N E,KONONOVA S V,et al.Cold shock domain proteins:Structure and interaction with nucleic acids[J]. Biochemistry(Moscow),2020,85(S1):1-19. [9] SCHÄRER K,STEPHAN R,TASARA T. Cold shock proteins contribute to the regulation of listeriolysin O production in Listeria monocytogenes[J]. Foodborne Pathog Dis,2013,10(12):1023-1029. [10] ESHWAR A K,GULDIMANN C,OEVERMANN A,et al.Cold-shock domain family proteins (csps) are involved in regulation of virulence,cellular aggregation,and flagella-based motility in Listeria monocytogenes[J]. Front Cell Infect Microbiol. 2017,7:453. [11] HORN G,HOFWEBER R,KREMER W,et al.Structure and function of bacterial cold shock proteins[J]. Cellular and Molecular Life Sciences,2007,64(12):1457. [12] NEMALI K S,BONIN C,DOHLFEMAN F G,et al.Physiological responses related to increased grain yield under drought in the first biotechnology-derived drought- tolerant maize[J]. Plant Cell Environ,2015,38(9):1866-1880. [13] 徐萍莉,陈丽萍,周秀杰,等. 枯草芽孢杆菌(Bacillus subtilis)cspB基因转化烟草(Nicotiana tabacuum)的研究[J]. 激光生物学报,2013,22(4):343-347,353. [14] CASTIGLIONI P,WARNER D,BENSEN R J,et al.Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions[J]. Plant Physiol,2008,147(2):446-455. [15] 肖文斐,倪深,裘劼人,等. 水稻冷激蛋白基因OsCSP2启动子的克隆与分析[J]. 浙江农业学报,2017,29(6):857-863. [16] KYTE J,DOOLITTLE R F.A simple method for displaying the hydropathic character of a protein[J]. Journal of Molecular Biology,1982,157(1):105-132. [17] PETERSEN T N,BRUNAK S,VON HEIJNE G,et al.SignalP 4.0:Discriminating signal peptides from transmembrane regions[J]. Nat Methods,2011,8(10):785-786. [18] GASTEIGER E,GATTIKER A,HOOGLAND C,et al.ExPASy:The proteomics server for in-depth protein knowledge and analysis[J]. Nucleic Acids Res,2003,31(13):3784-3788. [19] HORTON P,PARK K J,OBAYASHI T,et al.WoLF PSORT:Protein localization predictor[J]. Nucleic Acids Res,2007,35(suppl_2):W585-W587. [20] MARCHLER-BAUER A,BO Y,HAN L,et al. CDD/SPARCLE:Functional classification of proteins via subfamily domain architectures[J]. Nucleic Acids Res,2017,45(D1)D200-D203. [21] MARCHLER-BAUER A,DERBYSHIRE M K,GONZALES N R,et al.CDD:NCBI’s conserved domain database[J]. Nucleic Acids Res,2015,43(database issue):D222-D226. [22] MARCHLER-BAUER A,LU S,ANDERSON J B,et al.CDD:A Conserved Domain Database for the functional annotation of proteins[J]. Nucleic Acids Res,2011,39(S1):D225-D229. [23] MARCHLER-BAUER A,BRYANT S H.CD-Search:Protein domain annotations on the fly[J]. Nucleic Acids Res,2004,32(S2):W327-W331. [24] WATERHOUSE A,BERTONI M,BIENERT S,et al.SWISS-MODEL:Homology modelling of protein structures and complexes[J]. Nucleic Acids Research,2018,46(W1):W296-W303. [25] MAYR B,KAPLAN T,LECHNER S,et al.Identification and purification of a family of dimeric major cold shock protein homologs from the psychrotrophic Bacillus cereus WSBC 10201[J]. Journal of Bacteriology,1996,178(10):2916-2925. [26] YAMANAKA K,FANG L,INOUYE M.The CspA family in Escherichia coli:Multiple gene duplication for stress adaptation[J]. Molecular Microbiology,1998,27(2):247-255. [27] GRAUMANN P,WENDRICH T M,WEBER M H,et al.A family of cold shock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein synthesis at optimal and low temperatures[J]. Mol Microbiol,1997,25(4):741-756. [28] SCHRÖDER K,GRAUMANN P,SCHNUCHEL A,et al. Mutational analysis of the putative nucleic acid-binding surface of the cold-shock domain,CspB,revealed an essential role of aromatic and basic residues in binding of single-stranded DNA containing the Y-box motif[J]. Molecular Microbiology,1995,16(4):699-708. [29] LEE Y,KWAK C,JEONG K W,et al.Tyr51:Key determinant of the low thermostability of the Colwellia psychrerythraea cold-shock protein[J]. Biochemistry,2018,57(26):3625-3640. [30] WOUTERS J A,ROMBOUTS F M,KUIPERS O P,et al.The role of cold-shock proteins in low-temperature adaptation of food-related bacteria[J]. Syst Appl Microbiol,2000,23(2):165-173. [31] KETO-TIMONEN R,HIETALA N,PALONEN E,et al.Cold shock proteins:A minireview with special emphasis on csp-family of enteropathogenic Yersinia[J]. Frontiers in Microbiology,2016,7:1151. [32] ERMOLENKO D N,MAKHATADZE G I.Bacterial cold- shock proteins[J]. Cellular and Molecular Life Sciences CMLS,2002,59(11):1902-1913. |