[1] SAWIN J,SVERRISSON F,RICKERSON W,et al.Renewables 2015 Global Status Report[M]. Renewable Energy Policy Network for the 21st Century,2015. [2] KOIRALA R,THAPA B,NEOPANE H P,et al.A review on flow and sediment erosion in guide vanes of Francis turbines[J]. Renewable and Sustainable Energy Reviews,2017,75:1054-1065. [3] GOHIL P P,SAINI R P.Coalesced effect of cavitation and silt erosion in hydro turbines-a review[J]. Renewable and Sustainable Energy Reviews,2014,33:280-289. [4] ESCALER X,EGUSQUIZA E,FARHAT M,et al.Detection of cavitation in hydraulic turbines[J]. Mechanical Systems and Signal Processing,2006,20(4):983-1007. [5] BRIJKISHORE,KHARE R,PRASAD V.Prediction of cavitation and its mitigation techniques in hydraulic turbines- A review[J]. Ocean Engineering,2021,221:108512. [6] AVELLAN F.Introduction to cavitation in hydraulic machinery[J]. 6th Int Conf on Hydraulic Machinery and Hydrodynamics,2004. [7] 郭祥. 浅谈甘肃省柳园水电站提升改造[J]. 陕西水利,2020(8):228-229,231. [8] 谷锋,叶建波,尤军波,等. 宝珠寺电站水轮机转轮裂纹成因分析[J]. 水电能源科学,2022,40(9):203-205. [9] 李远余,杨卫彬,郑智颖,等. 沙河抽水蓄能电站技改转轮空化特性分析[J]. 东北电力大学学报,2021,41(1):82-89. [10] 王绮帆,李正贵,王维军,等. 空化对分流叶片式航空燃油泵性能的影响研究[J]. 热能动力工程,2021,36(4):21-29. [11] 李增亮,王萌,范梦浩,等. 垂直轴潮流能水轮机不同翼型叶片空化规律[J]. 水电能源科学,2020,38(6):158-161. [12] 李欣. 水轮机的空化与空蚀[J]. 科技创新与应用,2016(14):109. [13] LUO X W,JI B,TSUJIMOTO Y.A review of cavitation in hydraulic machinery[J]. Journal of Hydrodynamics,Ser B,2016,28(3):335-358. [14] LIU X,LUO Y,WANG Z.A review on fatigue damage mechanism in hydro turbines[J]. Renewable and Sustainable Energy Reviews,2016,54:1-14. [15] BREGLIOZZI G,DI SCHINO A,AHMED S I U,et al. Cavitation wear behaviour of austenitic stainless steels with different grain sizes[J]. Wear,2005,258(1/2/3/4):503-510. [16] DORJI U,GHOMASHCHI R.Hydro turbine failure mechanisms:An overview[J]. Engineering Failure Analysis,2014,44:136-147. [17] SINGH R,TIWARI S K,MISHRA S K.Cavitation erosion in hydraulic turbine components and mitigation by coatings:Current status and future needs[J]. Journal of Materials Engineering and Performance,2012,21(7):1539-1551. [18] LIU Q,LI Z,DU S,et al.Cavitation erosion behavior of GH 4738 nickel-based superalloy[J]. Tribology International,2021,156:106833. [19] FRANC J P,RIONDET M,KARIMI A,et al.Material and velocity effects on cavitation erosion pitting[J]. Wear,2012,274:248-259. [20] LI Z,HAN J,LU J,et al.Vibratory cavitation erosion behavior of AISI 304 stainless steel in water at elevated temperatures[J]. Wear,2014,321:33-37. [21] SEPÚLVEDA Y,GONZÁLEZ E,PÁEZ M A,et al. Sol-gel coatings for pitting corrosion resistance of AA 2024-T3 aluminium alloy[M]//Innovative Pre-Treatment Techniques to Prevent Corrosion of Metallic Surfaces. Amsterdam:Elsevier,2007:52-62. [22] LUDWIG G A,MALFATTI C F,SCHROEDER R M,et al.WC10Co4Cr coatings deposited by HVOF on martensitic stainless steel for use in hydraulic turbines: Resistance to corrosion and slurry erosion[J]. Surface and Coatings Technology,2019,377:124918. [23] HAWTHORNE H M,ARSENAULT B,IMMARIGEON J P,et al.Comparison of slurry and dry erosion behaviour of some HVOF thermal sprayed coatings[J]. Wear,1999,225:825-834. [24] TIAN Y,YANG R,GU Z,et al.Ultrahigh cavitation erosion resistant metal-matrix composites with biomimetic hierarchical structure[J]. Composites Part B:Engineering,2022,234:109730. [25] FRANC J P,MICHEL J M.Fundamentals of cavitation[M]. Fluid Mechanics and Its Applications,2005. [26] 常近时. 工质为浑水时水泵与水轮机的空化与空蚀[J]. 排灌机械工程学报,2010,28(2):93-97. [27] KAWAKAMI D,QIN Q,ARNDT R.Water quality and the periodicity of sheet/cloud cavitation[C]//Proceedings of ASME 2005 Fluids Engineering Division Summer Meeting,Houston,Texas,USA,2008. [28] DULAR M.Hydrodynamic cavitation damage in water at elevated temperatures[J]. Wear,2016,346:78-86. [29] LI Z,HAN J,LU J,et al.Vibratory cavitation erosion behavior of AISI 304 stainless steel in water at elevated temperatures[J]. Wear,2014,321:33-37. [30] 柳伟,郑玉贵,姚治铭,等. 金属材料的空蚀研究进展[J]. 中国腐蚀与防护学报,2001,21(4):250-255. [31] GOHIL P P,SAINI R P.Investigation into cavitation damage potentiality using pressure pulsation phenomena in a low head Francis turbine for small hydropower schemes[J]. Ocean Engineering,2022,263:112230. [32] 孙龙刚,郭鹏程,郑小波,等. 混流式水轮机叶道空化涡诱发高振幅压力脉动特性[J]. 农业工程学报,2021,37(21):62-70. [33] 梁武科,刘云琦,吴子娟,等. 转轮导流翼对混流式水轮机空化性能及转轮出口压力脉动的影响[J]. 水动力学研究与进展(A辑),2021,36(5):631-639. [34] 石祥钟,闫雪纯,孟燕,等. 长短叶片混流式水轮机空化特性的数值模拟[J]. 水电能源科学,2016,34(12):164-167,203. [35] 史广泰,薛志成,杨茜,等. 导叶开度对混流式水轮机转轮叶片表面空化性能的影响[J]. 中国农村水利水电,2021(3):163-167,172. [36] 于安,吕舒键,唐庆宏,等. 改装泄水锥对水轮机水力激振的影响分析[J]. 华中科技大学学报(自然科学版),2020,48(11):115-119,132. [37] KHULLAR S,SINGH K M,CERVANTES M J,et al.Influence of runner cone profile and axial water jet injection in a low head Francis turbine at part load[J]. Sustainable Energy Technologies and Assessments,2022,50:101810. [38] DING H,VISSER F C,JIANG Y,et al.Demonstration and validation of a 3D CFD simulation tool predicting pump performance and cavitation for industrial applications[J]. Journal of Fluids Engineering,2011,133(1):1. [39] CHEAH K W,LEE T S,WINOTO S H,et al.Numerical flow simulation in a centrifugal pump at design and off- design conditions[J]. International Journal of Rotating Machinery,2007,2007:1-8. [40] DYSON G,TEIXEIRA J.Investigation of closed valve operation using computational fluid dynamics[C]//Proceedings of ASME 2009 Fluids Engineering Division Summer Meeting,Vail,Colorado,USA. 2010:1-9. [41] 李刚,侯为林,王浩,等. 基于CFD的高水头水泵水轮机空化性能研究[J]. 电网与清洁能源,2017,33(4):131-136. [42] SIAN T.Scale model testing of tidal stream turbines: Wake characterisation in realistic flow conditions[D]. Liverpool:University of Liverpool,2014. [43] TIWARI G,KUMAR J,PRASAD V,et al.Utility of CFD in the design and performance analysis of hydraulic turbines-a review[J]. Energy Reports,2020,6:2410-2429. [44] KUMAR D,BHINGOLE P P.CFD based analysis of combined effect of cavitation and silt erosion on kaplan turbine[J]. Materials Today:Proceedings,2015,2(4/5):2314-2322. [45] GANGIPAMULA R,PATNAIK S S,KAMAT S A,et al.Experiments and numerical simulation sofa francis turbine model reflecting actual site environment[M]//Lecture Notes in Mechanical Engineering. Singapore:Springer Singapore,2021:111-118. [46] CELEBIOGLU K,ARADAG S,AYLI E,et al.Rehabilitation of francis turbines of power plants with computational methods[J]. Hittite Journal of Science & Engineering,2018,5(1):37-48. [47] GOHIL P,SAINI R.Numerical study of cavitation in francis turbine of a small hydro power plant[J]. Journal of Applied Fluid Mechanics,2016,9(1):357-365. [48] TIWARI G,KUMAR J,PRASAD V,et al.Derivation of cavitation characteristics of a 3MW prototype Francis turbine through numerical hydrodynamic analysis[J]. Materials Today:Proceedings,2020,26:1439-1448. [49] GOHIL P P,SAINI R P.Effect of temperature, suction head and flow velocity on cavitation in a Francis turbine of small hydro power plant[J]. Energy,2015,93:613-624. [50] AYLI E,CELEBIOGLU K,ARADAG S.Determination and generalization of the effects of design parameters on Francis turbine runner performance[J]. Engineering Applications of Computational Fluid Mechanics,2016,10(1):545-564. [51] GOHIL P,SAINI R.Numerical study of cavitation in francis turbine of a small hydro power plant[J]. Journal of Applied Fluid Mechanics,2016,9(1):357-365. [52] PRASAD V,KHARE R.CFD:An Effective Tool for Flow simulation in hydraulic reaction turbines[J]. International Journal of Engineering Research and Applications,2012,2(4):1029-1035. [53] GOYAL R,GANDHI B K.Review of hydrodynamics instabilities in Francis turbine during off-design and transient operations[J]. Renewable Energy,2018,116:697-709. [54] SU W,LI F C,LI X,et al.Assessment of les performance in simulating complex 3D flows in turbo-machines[J]. Engineering Applications of Computational Fluid Mechanics,2012,6(3):356-365. |